Resilience at the Grid-Edge Using Trustable DERs

Anuradha Annaswamy

Active-adaptive Control Laboratory Department of Mechanical Engineering

Massachusetts Institute of Technology

* Sponsors: US Department of Energy, MIT Energy Initiative

There is a problem

Ukraine Power Grid Attack (2015)

Impacted 225,000 customers

Source: Case, Defense Use. "Analysis of the cyber attack on the Ukrainian power grid." Electricity Information Sharing and Analysis Center (E-ISAC) 388 (2016).

There is a problem

Ukraine Power Grid Attack (2015)

Spearphish Tools & Tech Credential heft Ukraine Event Significant Events based on Control & publicly available reporting Operate VPN Access Workstation Remote

CHERNOVITE'S PIPEDREAM

- **Omron PLCs**
- Other vendor CODESYS-based PLCs likely vulnerable to manipulation by the capabilities.

- No associations with known activity groups
- Unique Tool Development
- · Adversary leverages the exploitation of vulnerabilities inside of its capabilities.

CAPABILITIES

- Custom capabilities for manipulating and disabling PLCs.
- Custom capabilities using ICS-specific protocols for internal reconnaissance and manipulation.
- Custom interactive operational capability to perform system enumeration, issue WMI commands. host-based command execution, file operations, and registry manipulation.
- PLC Denial of Service.
 - Credential capture and brute forcing of PLCs.

Impacted 225,000 customers

Capable of executing 38% of known attack techniques and 83% attack tactics cataloged by MITRE

Source: Case, Defense Use. "Analysis of the cyber attack on the Ukrainian power grid." *Electricity Information Sharing and Analysis Center (E-ISAC)* 388 (2016). Sources: Dragos, Inc. "PIPEDREAM: CHERNOVITE's Emerging Malware Targeting Industrial Control Systems." (2022); https://attack.mitre.org/

Workshop on Cyber-resilient Distribution Systems, MIT, October 18, 2024

IMPACT

availability, and control

Install/Modify; Execute

INFRASTRUCTURE

workstations, and PLC

control software for

Custom operational

lateral movement and

implant designed for

command and control

Utilizes victim PLCs.

 Manipulation of control ICS Kill Chain Stage 2 -

Loss of safety.

ICS Attack

engineering

manipulation.

over SSL.

Optimization challenging with billions of end-point control

We have a model*

Proposed hierarchical local electricity market (LEM)

Different players in the LEM

- DSO participates in WEM
- PMO May be Utility-operated
- PMA Large loads or generators can participate directly in PM; Examples:
 - DER aggregators
 - Large industrial loads
 - Microgrids
- SMO DER aggregators
 - SMA: Smaller loads/DER owners
- Energy Managers
 - Coordinate IoT devices

Second step: Develop Situational Awareness (SA)

Overview of attack scenario

- RM = Resilience manager
 → Monitors grid & provides SA
 → Manages attack mitigation
- MO = Market operator
 → Handles market bidding, clearing, settlement
- Setpoints are corrupted at nodes (<)
 - DG: Distributed generation attack e.g. PV/batteries shut down
 - LA: Load alteration attack
- Simultaneously, key communication links are disrupted (<)
- No visibility: PRM doesn't know which nodes have been attacked
- Goal is to provide local resilience
 - Minimize power import from bulk grid

Workshop on Cyber-resilient Distribution Systems, MIT, October 18, 2024

RS: Resilience Scores

Attack detection & mitigation

- PRM monitors power injection at substation (PCC)
 - Detects attack if injection deviates significantly from forecasted value i.e. $|\mathbf{P}_{cc} \overline{\mathbf{P}}_{cc}| > \epsilon$
- PRM doesn't have direct control over SMOs \rightarrow Use distributed coordination
- PRM modifies objective function coefficients for all SMOs

Cost function:
$$\sum_{i=1}^{n} \left(\frac{1}{2} \alpha_i P_i^{G^2} + \beta_i \left(P_i^L - P_i^{L0} \right)^2 \right) + \xi \cdot \text{ losses}$$
(1)

$$\Delta = \mathbf{P}_{cc} - \overline{\mathbf{P}}_{cc} \tag{2}$$

$$Z_{i}(\delta_{i}) = 1 + \frac{RS_{i}\Delta^{\top}\delta_{i}}{\mu\sum_{i}RS_{i}} \Longrightarrow \gamma_{i\delta} = \frac{1}{Z_{i}(\delta_{i})}$$
(3)

$$\overline{\boldsymbol{\alpha}}_{i} = \gamma_{i\alpha} \boldsymbol{\alpha}_{i}, \quad \overline{\boldsymbol{\beta}}_{i} = \gamma_{i\beta} \boldsymbol{\beta}_{i}, \quad \overline{\boldsymbol{\xi}} = \left(\frac{\sum_{i} \gamma_{i\alpha} + \gamma_{i\beta}}{2n}\right)^{-1} \boldsymbol{\xi}$$
(4)

• Optimally redispatch resources at primary/secondary level (ICA_s, ICA_p) with new reweighted objective \rightarrow Update { α_i, β_i, ξ } as { $\overline{\alpha}_i, \overline{\beta}_i, \overline{\xi}$ }

Types of attack surfaces*

Attack	Туре	Attack surface	Model
1	45 kW loss of DG	PMA	GridLAB-D
2	681kW loss of DG	PMA, SMA	IEEE 123
3	Islanded	PMA	IEEE 123

* https://arxiv.org/abs/2406.14861

SMA disaggregation and RS

- Distribute flexibility (curtailment) among SMAs based on their individual RS
- Generally allocate more flexibility to SMAs with higher RS

SMA

SMA 1

SMA 2

SMA 3

RS

0.947

0.985

0.493

Attack 2: Large scale attack with mitigation

- 1. A total of 641 kw generation loss
- 2. PRM alerts other trustable PMAs/SMOs to redispatch their generation assets
- 3. Trustable PMAs/SMOs will curtail flexible loads to respond & mitigate attack
- 4. SMOs redispatch SMAs who provide correct setpoints
- 5. Total import from the main grid stays at the same level

82 flexible load nodes respond

Large scale attack 2: Mitigation

Attack 2 – Validation at the Transmission Level

RESPONSE WITHOUT EUREICA

EUREICA: Efficient Ultra-efficient IoT-coordinated Assets

RESPONSE WITH EUREICA

Overall timeline of Attack 3.0

- Fault occurs at Node 150
- SW 150 to 149 is disconnected
- DG at node 48 is connected through reconfiguration
- With no Situational Awareness: Distribution system is disconnected, loads are shed

With Our Approach:

- Situational awareness is increased ability to shed load intelligently
- DERs added at 48 (270 kW) and 65 (15 kW)
- Appropriate reconfiguration follows, and all critical loads across the entire feeder (30% of all loads) are picked up
- Alternatively, the critical loads could be situated in the same zone – here, all loads in Zone 3 are picked up

With additional microgrid:

- Military microgrid at node 66 (1.7 MW)
- Situational awareness helps trustable DR reduce consumption by 20%
- \circ $\,$ 80% all loads picked up $\,$

Attack 3 ADMS Verification – Microgrid

Primary Node Load during Attack 4

Before After

- 1. Shows the primary node load change comparison between 12:59 and 13:00
- 2. DG 48 pickup all expected load in region 3 with 430 kW generation

Resilience at the Grid-Edge Using Trustable DERS

Approach

Results

Deep decarbonization in a power grid introduces several communication windows of vulnerabilities & opportunities

- 1. Distributed IoT-coordinated Assets can be ascertained
- 2. They provide opportunities for enhancing resilience
- 3. Local resilience through trustable DERs

- Development of attack surfaces that can induce a range of threat levels in a distribution grid
- A resilience-based approach that determines Situational Awareness (SA) as well as Resilience Scores (RS) of all assets to operators who are strategically located
- Two large-scale attacks were emulated on an IEEE 123-Feeder
- Attack impact was mitigated using SA and RS

The Team

Sponsors

Venkatesh Venkataramanan

Priyank Srivastava

Vineet Nair

Rabat Haider

- US Department of Energy, "Efficient Ultra-Resilient IoT-coordinated Assets (EUREICA)"
- US Department of Energy, "USA-India Collaborative for Smart Distribution System with Storage"
- MIT Energy Initiative, "Maximizing Security and Resilience to Cyber-attacks in a Power Grid"
- US National Science Foundation, Resilient Interdependent Processes and Systems

Collaborators

- Washington State University: Anurag Srivastava
- National Renewable Energy Laboratory: Venkatesh Venkataramanan
- Pacific Northwest National Laboratory: Laurentiu Marinovici, Karan Kalsi
- Princeton: Vince Poor, Prateek Mittal

Past students: David Dachiardi, Tom Nudell, Sandra, Jenkins, Stefanos, Bargs, MIT, October 18, 2024 Milos Cvetkovic

Thank you!

Workshop of the main of the standard with the standard standard with the standard stand Standard s