Data-driven distributed optimization, markets, and control for an IBR-rich grid edge

Vineet Jagadeesan Nair Advisor: Dr. Anuradha Annaswamy

Active-Adaptive Control Laboratory Department of Mechanical Engineering, MIT

Grid edge becoming more complex, intelligent, capable

A distributed paradigm

Urban distribution network: ~2 million nodes [1]

At grid's edge

119m smart meters in 2022 [2]

Communication

Internet of things

Renewables

Projected 6.7 GW solar in New England by 2028 [3] Faster Timescales

Solar + Wind Demand Response milliseconds - minutes

- Resource Coordination: Distributed Optimization + Control
- Multiple stakeholders are present

M. Zhao et al. Trans. on Computer-Aided Design of Integrated Circuits and Systems, Feb. 2002
 EIA
 ISO-NE https://www.iso-ne.com/about/what-we-do/in-depth/solar-power-in-new-england-locations-and-impact.

Transactive Energy

Use markets & prices to influence desired behaviours from various autonomous, independent agents at the grid edge, at fast timescales

Efficient integration of Distributed Energy Resources possible with a transactive design:

- Flexible loads (thermostats, water heaters)
- Distributed generation (rooftop solar, wind)
- Storage (EVs, batteries)

Primer on electricity markets

Why local retail electricity markets?

Fully integrate DERs into the network using **distributed & decentralized** local retail markets

- [1] J. Gundlach and R. Webb. "Distributed energy resource participation in wholesale markets: Lessons from the California ISO", 2018
- [2] Newell, S and Ahmad Fi "Dynamic Pricing: Potential Wholesale Market Benefits in New York" The Brattle Group (2009).
- [3] L.V. Wood. "Why net energy metering results in a subsidy: The elephant in the room." 2016

Hierarchical local electricity markets (LEM)

Primary market: AC optimal power flow

- Branch flow (DistFlow) model
- Balanced, single-phase, radial network
- 2nd order cone convex relaxation

min f(x)

Subject to:

$$v_{j} - v_{i} = \left(R_{ij}^{2} + X_{ij}^{2}\right)l_{ij}$$

$$-2\left(R_{ij}P_{ij} + X_{ij}Q_{ij}\right)$$

$$P_{ij} = R_{ij}l_{ij} - P_{j} + \sum_{k \in \{k_{j}\}} P_{jk}$$

$$Q_{ij} = X_{ij}l_{ij} - Q_{j} + \sum_{k \in \{k_{j}\}} Q_{jk}$$

$$P_{ij}^{2} + Q_{ij}^{2} \leq v_{i}l_{ij}$$

$$P_{j} \in [\underline{P}_{j}, \overline{P}_{j}], Q_{j} \in [\underline{Q}_{j}, \overline{Q}_{j}]$$

$$v_{j} \in [\underline{v}_{j}, \overline{v}_{j}]$$
where $l_{ij} = \left|I_{ij}\right|^{2}$ and $v_{i} = |V_{i}|^{2}$.

- Current injection model
- Unbalanced, 3-phase, radial/meshed network
- McCormick envelopes convex relaxation

Distributed optimization: Proximal atomic coordination (PAC)

Primary retail market clearing using SMO bids & PAC

100

- Computationally tractable
- Reduced communication requirements
- Preserve data privacy (for dual variables)

* Haider et al., ADAPEN 2022; Romvary et al. IEEE TAC, 2021; Haider et al., TSG 2021

LEM summary

Example secondary market results

Retail prices across PM and SM

- PM and SM provide granular spatially and temporally varying prices
- Average dLMP across network better reflects real-time operational flexibility with SMO
 → Lower overall costs

[\$/kWh]	Hierarchical LEM	Primary LEM only	No LEM
Avg. dLMP	0.064	0.116	N/A
Avg. local tariff	0.082	0.116	0.129 [1]

LEM for voltage regulation

LEM (SM + PM) improves overall voltage profile \rightarrow More uniform + closer to 1 p.u.

LEM enables accurate grid service pricing

Distributed model predictive voltage control

Minimal data exchange

Solve using algorithm based on alternating direction method of multipliers [1]

[1] A. Falsone, et al., "Tracking-ADMM for distributed constraint-coupled optimization," Automatica, Volume 117, 2020. Hartmann et al., MITAB 2024; Srivastava et al., 2023

DMPC outperforms averaging PI control

ation

융

nitude

magn

- Simulate large load step disturbance ٠
- Stable response without parameter tuning ٠
- **Reduces** oscillations •

•

- Relies more on on IBRs closer to load step •
 - More efficient dispatch \rightarrow Lower losses

Hartmann et al., MITAB 2024

Conclusions

- Hierarchical local electricity markets allowing handling of grid constraints & agent preferences @ different levels

 Improve grid reliability & avoid 'tier-bypassing' issues
 Provide grid services like flexibility & voltage control
 - \circ Spatial-temporal prices \rightarrow Accurately charge/compensate prosumers
- Markets can be used to implement distributed optimization & control algorithms
- Questions for discussion:

How can we extend our methods to cases with limited observability?
How can we use our algorithms for reforming electricity markets & policy?
How do we redesign utility business models for IBR-rich grids?
How do we redistribute costs & ensure fair tariffs?

Enhanced version: NST-PAC

$$\begin{aligned} a_j[\tau+1] &= \operatorname*{argmin}_{a_j} \left\{ \mathcal{L}_j \left(a_j, \hat{\eta}_j[\tau], \hat{\nu}[\tau] \right) \\ &+ \frac{\rho_j \gamma_j}{2} \left\| G_j a_j - b_j \right\|_2^2 + \frac{\rho_j \gamma_j}{2} \left\| B_j a_j \right\|_2^2 \\ &+ \frac{1}{2\rho_j} \left\| a_j - a_j[\tau] \right\|_2^2 \right\} \\ \hat{a}_j[\tau+1] &= a_j[\tau+1] + \alpha_j[\tau+1] \left(a_j[\tau+1] - a_j[\tau] \right) \\ \eta_j[\tau+1] &= \hat{\eta}_j[\tau] + \rho_j \gamma_j \left(G_j \hat{a}_j[\tau+1] - b_j \right) \\ \hat{\eta}_j[\tau+1] &= \eta_j[\tau+1] + \phi_j[\tau+1] \left(\eta_j[\tau+1] - \eta_j[\tau] \right) \end{aligned}$$
Communicate \hat{a}_j for all $j \in [K]$ with neighbors $\nu_j[\tau+1] = \nu_j[\tau+1] + \theta_j[\tau+1] \left(\nu_j[\tau+1] - \nu_j[\tau] \right) \\ \hat{\nu}_j[\tau+1] &= \nu_j[\tau+1] + \theta_j[\tau+1] \left(\nu_j[\tau+1] - \nu_j[\tau] \right) \end{aligned}$
Communicate $\hat{\nu}_j$ for all $j \in [K]$ with neighbors

- Use nonlinear regularization terms instead of linearized (PAC)
- Both primal & dual variable updates use Nesterov acceleration
- Privacy for both primals/duals

 Use time-varying & atom-specific step-sizes