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Reconciling physics and hard constraints
with fast and scalable computation
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Decision-making: Given (uncertain) demand,

how do we schedule supply?
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Stability constraints

"

Trad. optimization & control
Satisfies (many) constraints
Struggles with speed / scale

Machine learning (ML)
Fast and scalable
Struggles with constraints

Figure adapted from: US Congressional Budget Office
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Today’s talk

» Optimization-in-the-loop ML: Framework for developing ML methods
incorporating knowledge of physics/hard constraints, via optimization problems

« Application to single-agent control: Optimization-in-the-loop reinforcement
learning with enforcement of asymptotic stability or state/action constraints

* Future directions in distributed control: Bridging optimization-in-the-loop
learning, multi-agent reinforcement learning, and decomposition methods
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Deep learning is differentiable function composition
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Deep learning is differentiable function composition

- Neural network hy = composition of nonlinear, parameterized functions (layers)
- Update parameters 6 to minimize loss £ using gradients from backpropagation

- All components (layers and loss) must be differentiable
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Differentiating through optimization problems
(broader literature: implicit layers)

Insight: Apply implicit function theorem to equilibrium or optimality conditions
(and use computational tricks to efficiently compute d¢/d8 directly)

OptNet: Differentiable Optimization as a Layer in Neural Networks Task-based End-to-end Model Learning

in Stochastic Optimization

SATNet: Bridging deep learning and logical reasoning using a differentiable

[aximization

Powerful toolkit for optimization-in-the-loop ML

R (and differentiable programming more broadly)  Layers
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Deep reinforcement learning vs. robust control
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Deep RL Robust control
Pro: Expressive, well-performing policies Pro: Provable stability guarantees
Con: Potential (catastrophic) failures Con: Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network
policies." International Conference on Learning Representations (ICLR) 2021.



Differentiable projection onto stabilizing actions

Deep learning-based policy with provable robustness guarantees (even for a
randomly initialized neural network), trainable using reinforcement learning

C(x)
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Nominal
action

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network
policies." International Conference on Learning Representations (ICLR) 2021.
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Finding a set of stabilizing actions (example)

Insight: Find a set of actions that are guaranteed to satisfy relevant
Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):

- Uncertainty model: e.g., ¥(f) € Ax(t) + Bu(t) + Gw(t) s.t. ||w(t)|], < [|Cx(t) + Dult)]|,
- Lyapunov function V obtained via robust control synthesis

- Exponential stability criterion: V(x(1)) < —aV (x(1)),Vx # 0

Find: For given x, set of actions satisfying exponential stability criterion even in worst case

C(x) = {u:( sup V( )) < —aV(x)}

w i lwllzsllCx+Dull;

= {u: |lkey () + Dully < kp () + k3 ()" u}
Convex (non-empty) set in u(t)

“."ﬁe (X( t))

Note: t-dependence has been dropped for brevity Convex projection
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Illustrative results: Synthetic NLDI system

Non-robust methods
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Robust
control

® Ordinary m Adversarial
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LQR

Our methods

Ol
Stable
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Robust
MBP*

Robust
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Improved
‘“average-case”
performance over
robust baselines

Provably stable
under “worst-case”
dynamics (unlike
non-robust baselines)

Needs improvement:
Computational cost
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Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while
respecting equipment constraints and maintaining thermal comfort
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H Hot Water to Plant

Intelligent Workplace \_ S—
Margaret Morrison Hall, 4th Floor .
° ’ HVAC Schematic

(*¥ Zhang & Lam, 2018)

Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.
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Differentiable projection onto feasible actions

System state
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Results on realistic-scale building simulator

Improved energy efficiency (4-24%) Comparable thermal comfort

Total Heating Predicted Percentage Dissatisfied
Demand Mean Std
(kWh) (%) (%)
Existing controller 43709 9.45 5.59
Agent #6
(Zhang & Lam, 2018) 37131 11.71 3.76
Gnu-RL 34678 9.56 6.39

(Chen et al., 2019)
PROF (ours) 33271 9.68 3.66
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Deep reinforcement learning vs. robust control
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Today’s talk

» Optimization-in-the-loop ML: Framework for developing ML methods
incorporating knowledge of physics/hard constraints, via optimization problems

« Application to single-agent control: Optimization-in-the-loop reinforcement
learning with enforcement of asymptotic stability or state/action constraints

|

* Future directions in distributed control: Bridging optimization-in-the-loop
learning, multi-agent reinforcement learning, and decomposition methods
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Reinforcement learning

Single-agent

> Multi-agent

Standard reinforcement learning training

Centralized Training with Decentralized Execution (CTDE)

Optimization

Centralized optimization
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Reinforcement learning

Optimization

Many questions - seeking collaborators!

Single-agent Multi-agent Addressing the “right” settings
Standard reinforcement learning training Centralized Training with Decentralized Execution (CTDE) . Distri bute d Vs, d acentra liZG d7
* Competitive vs. cooperative?
 Communication constraints?
 Stability and safety reqgs.?

Centralized optimization Decomposition methods

Bridging the “best” methods
* Robust control formulations
and synthesis techniques
 Decomposition approaches
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Priya L. Donti: donti@mit.edu
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