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Reconciling physics and hard constraints 
with fast and scalable computation

Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?
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Hard constraints: 
Stability constraints

Trad. optimization & control

" Satisfies (many) constraints

" Struggles with speed / scale

Machine learning (ML)

" Fast and scalable

" Struggles with constraints



Today9s talk
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" Optimization-in-the-loop ML: Framework for developing ML methods 

incorporating knowledge of physics/hard constraints, via optimization problems

"  Application to single-agent control: Optimization-in-the-loop reinforcement 

learning with enforcement of asymptotic stability or state/action constraints

" Future directions in distributed control: Bridging optimization-in-the-loop 

learning, multi-agent reinforcement learning, and decomposition methods
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Model ýÿ

Deep learning is differentiable function composition
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Model ýÿ

Deep learning is differentiable function composition
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- Neural network /ÿ  = composition of nonlinear, parameterized functions (layers)

- Update parameters ÿ to minimize loss 3 using gradients from backpropagation

- All components (layers and loss) must be differentiable
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Differentiating through optimization problems
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Insight: Apply implicit function theorem to equilibrium or optimality conditions

(and use computational tricks to efficiently compute d3/dÿ directly)

(broader literature: implicit layers)

Powerful toolkit for optimization-in-the-loop ML

(and differentiable programming more broadly)
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Deep reinforcement learning vs. robust control

Deep RL Robust control

Pro: Expressive, well-performing policies

Con: Potential (catastrophic) failures

Can we improve performance while still guaranteeing stability?

Pro: Provable stability guarantees

Con: Simple policies (e.g., linear)

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network 
policies." International Conference on Learning Representations (ICLR) 2021. 9



Differentiable projection onto stabilizing actions
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Deep learning-based policy with provable robustness guarantees (even for a 
randomly initialized neural network), trainable using reinforcement learning
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Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network 
policies." International Conference on Learning Representations (ICLR) 2021.



Finding a set of stabilizing actions (example)

Given the following (from robust control): 

- Uncertainty model: e.g., 6ý ý * ýý ý + ýÿ ý + ÿý ý  s. t. ||ý ý ||2 f  ||ÿý ý + ÿÿ ý ||2
- Lyapunov function ý obtained via robust control synthesis

- Exponential stability criterion: 6ý ý ý f 2ÿý(ý ý ), "ý b 0
Find: For given ý, set of actions satisfying exponential stability criterion even in worst caseÿ ý c { ÿ: supý 6 ý 2f ÿý+ÿÿ 2 6ý ý f 2ÿý ý }ó {ÿ: ý1 ý + ÿÿ 2 f ý2 ý + ý3 ý ÿÿ}
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Convex (non-empty) set in ÿ ý
Note: ý-dependence has been dropped for brevity

ÿ ý ýÿÿ ý ýÿý(ý) Ýÿÿ ý ý
Convex projection

Insight: Find a set of actions that are guaranteed to satisfy relevant 
Lyapunov stability criteria at a given state, even under worst-case conditions



Illustrative results: Synthetic NLDI system
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Unstable

Stable

Improved 

<average-case=
performance over 
robust baselines

Provably stable 
under <worst-case=
dynamics (unlike 
non-robust baselines)

Needs improvement: 
Computational cost

[lower is better]



Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while 
respecting equipment constraints and maintaining thermal comfort

13

Intelligent Workplace

Margaret Morrison Hall, 4th Floor

(' Zhang & Lam, 2018)
HVAC Schematic

Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through 
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.



Differentiable projection onto feasible actions
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Total Heating 

Demand 
Predicted Percentage Dissatisfied

Mean Std

(kWh) (%) (%)

Existing controller 43709 9.45 5.59

Agent #6 
(Zhang & Lam, 2018)

37131 11.71 3.76

Gnu-RL 
(Chen et al., 2019)

34678 9.56 6.39

PROF (ours) 33271 9.68 3.66

Results on realistic-scale building simulator
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Improved energy efficiency (4-24%) Comparable thermal comfort

Total Heating 

Demand 
Predicted Percentage Dissatisfied

Mean Std

(kWh) (%) (%)

Existing controller 43709 9.45 5.59

Agent #6 
(Zhang & Lam, 2018)

37131 11.71 3.76

Gnu-RL 
(Chen et al., 2019)

34678 9.56 6.39

PROF (ours) 33271 9.68 3.66



Deep reinforcement learning vs. robust control

Deep RL Robust control

Pro: Expressive, well-performing policies

Con: Potential (catastrophic) failures

Can we improve performance while still guaranteeing stability?

Pro: Provable stability guarantees

Con: Simple policies (e.g., linear)
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Single-agent

Environ.

Multi-agent

Agent

Shared info (train time only)

Environ.

Agent 1 Agent N
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Centralized Training with Decentralized Execution (CTDE)Standard reinforcement learning training
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Many questions 3 seeking collaborators!

Addressing the <right= settings
" Distributed vs. decentralized?

" Competitive vs. cooperative?

" Communication constraints?

" Stability and safety reqs.?

Bridging the <best= methods
" Robust control formulations 

and synthesis techniques

" Decomposition approaches

Priya L. Donti: donti@mit.edu
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