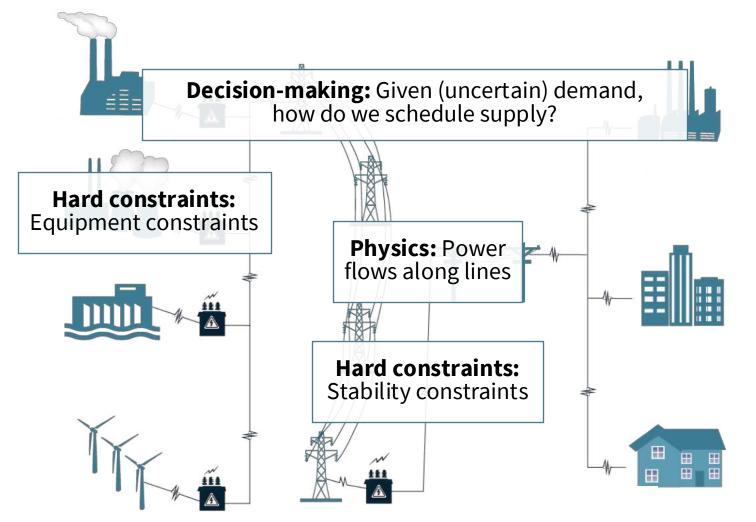
Optimization-in-the-loop ML for power grid operations

Priya L. Donti

Assistant Professor, MIT EECS and LIDS

Reconciling physics and hard constraints with fast and scalable computation



Trad. optimization & control

- Satisfies (many) constraints
- Struggles with speed / scale

Machine learning (ML)

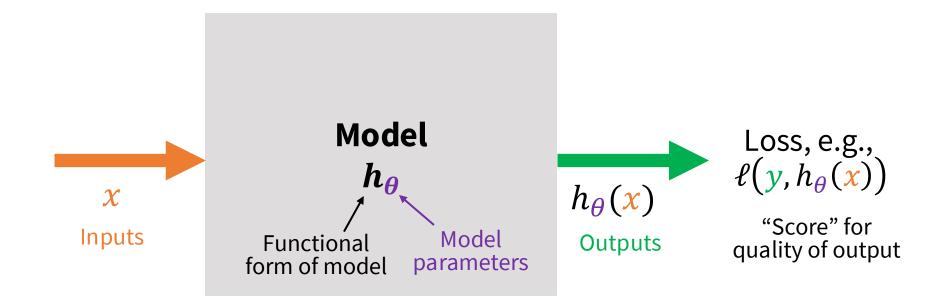
- Fast and scalable
- Struggles with constraints

2

- **Optimization-in-the-loop ML:** Framework for developing ML methods incorporating knowledge of physics/hard constraints, via optimization problems
- **Application to single-agent control:** Optimization-in-the-loop reinforcement learning with enforcement of asymptotic stability or state/action constraints
- Future directions in distributed control: Bridging optimization-in-the-loop learning, multi-agent reinforcement learning, and decomposition methods

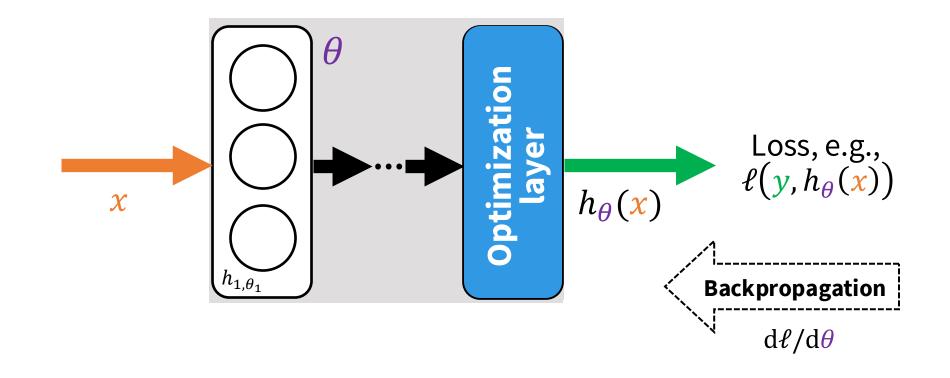
- **Optimization-in-the-loop ML:** Framework for developing ML methods incorporating knowledge of physics/hard constraints, via optimization problems
- **Application to single-agent control:** Optimization-in-the-loop reinforcement learning with enforcement of asymptotic stability or state/action constraints
- Future directions in distributed control: Bridging optimization-in-the-loop learning, multi-agent reinforcement learning, and decomposition methods

Deep learning is differentiable function composition



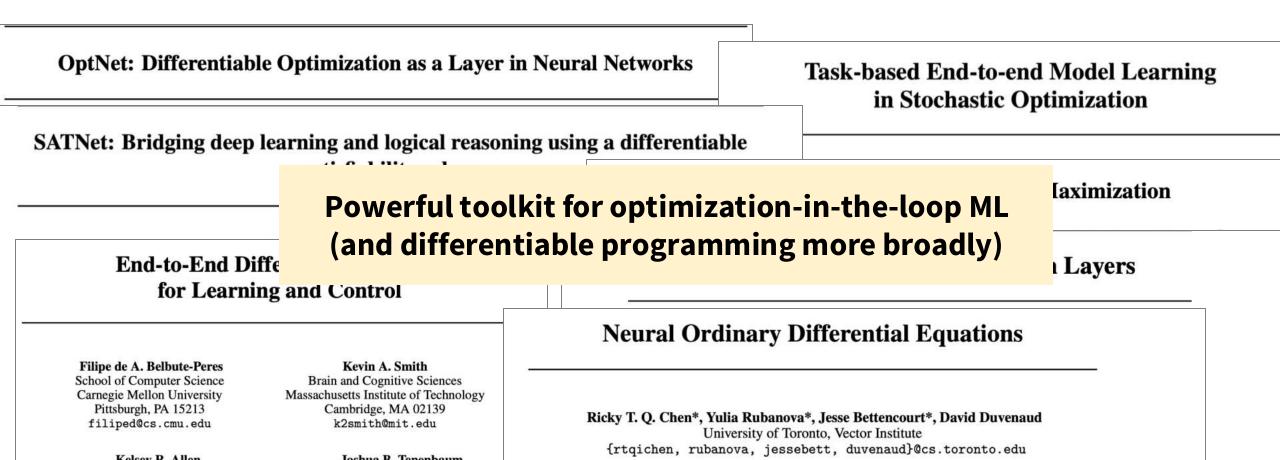
Deep learning is differentiable function composition

- Neural network h_{θ} = composition of nonlinear, parameterized functions (*layers*)
- Update parameters θ to minimize loss ℓ using gradients from *backpropagation*
- All components (layers and loss) must be differentiable



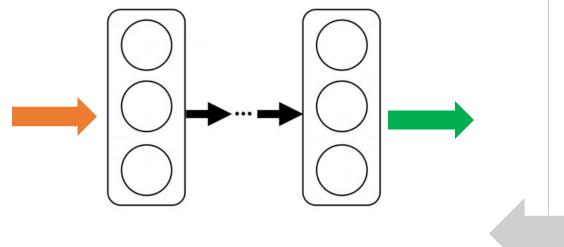
Differentiating through optimization problems (broader literature: implicit layers)

Insight: Apply implicit function theorem to equilibrium or optimality conditions (and use computational tricks to efficiently compute $d\ell/d\theta$ directly)



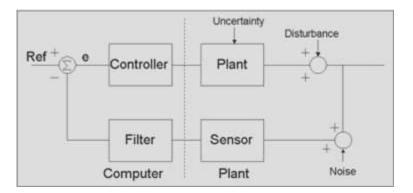
- **Optimization-in-the-loop ML:** Framework for developing ML methods incorporating knowledge of physics/hard constraints, via optimization problems
- **Application to single-agent control:** Optimization-in-the-loop reinforcement learning with enforcement of asymptotic stability or state/action constraints
- Future directions in distributed control: Bridging optimization-in-the-loop learning, multi-agent reinforcement learning, and decomposition methods

Deep reinforcement learning vs. robust control



Deep RL

Pro: Expressive, well-performing policies **Con:** Potential (catastrophic) failures



Robust control

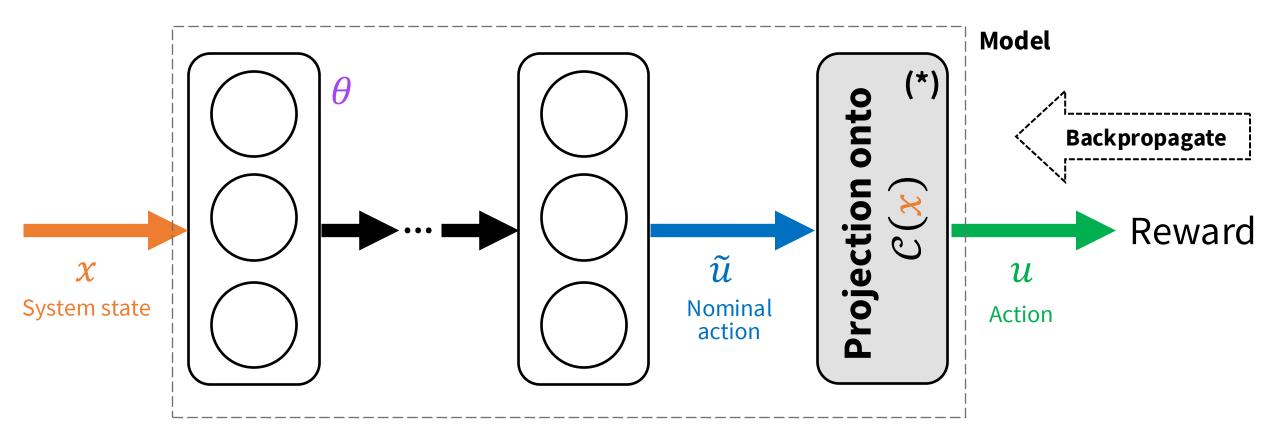
Pro: Provable stability guarantees **Con:** Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network policies." *International Conference on Learning Representations (ICLR) 2021.*

Differentiable projection onto stabilizing actions

Deep learning-based policy with **provable robustness guarantees** (even for a randomly initialized neural network), trainable using reinforcement learning



Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network policies." *International Conference on Learning Representations (ICLR) 2021.*

Finding a set of stabilizing actions (example)

Insight: Find a set of actions that are guaranteed to satisfy relevant Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):

- Uncertainty model: e.g., $\dot{x}(t) \in Ax(t) + Bu(t) + Gw(t)$ s.t. $||w(t)||_2 \leq ||Cx(t) + Du(t)||_2$
- Lyapunov function V obtained via robust control synthesis
- Exponential stability criterion: $\dot{V}(x(t)) \leq -\alpha V(x(t)), \forall x \neq 0$

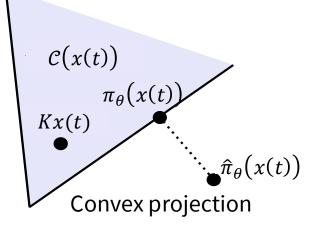
Find: For given *x*, set of actions satisfying exponential stability criterion even in worst case

$$\mathcal{C}(\mathbf{x}) \equiv \{ u: \left(\sup_{w: \|w\|_{2} \le \|C\mathbf{x} + Du\|_{2}} \dot{V}(\mathbf{x}) \right) \le -\alpha V(\mathbf{x}) \}$$

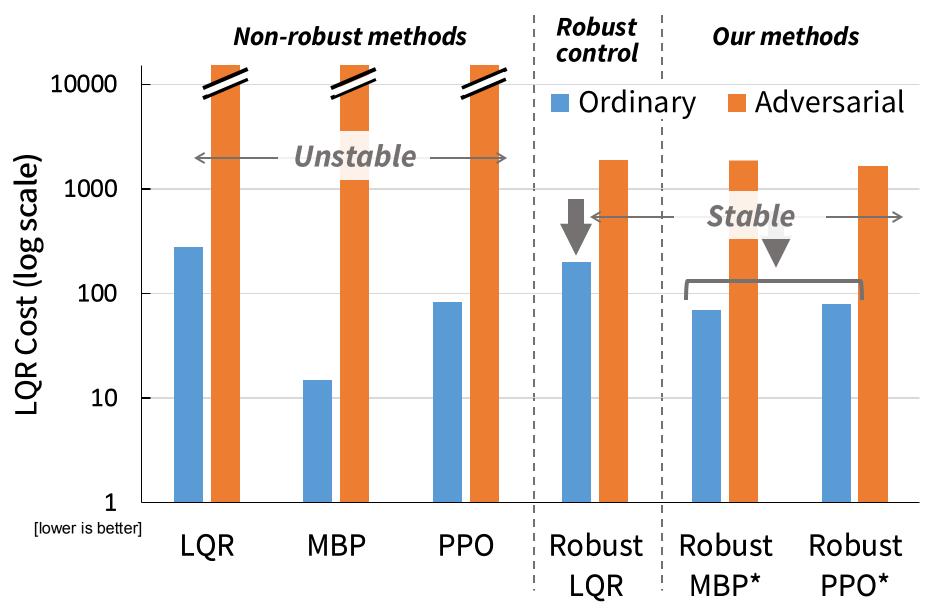
$$\Rightarrow \{ u: \|k_{1}(\mathbf{x}) + Du\|_{2} \le k_{2}(\mathbf{x}) + k_{3}(\mathbf{x})^{T} u \}$$

Convex (non-empty) set in $u(t)$

Note: *t*-dependence has been dropped for brevity



Illustrative results: Synthetic NLDI system



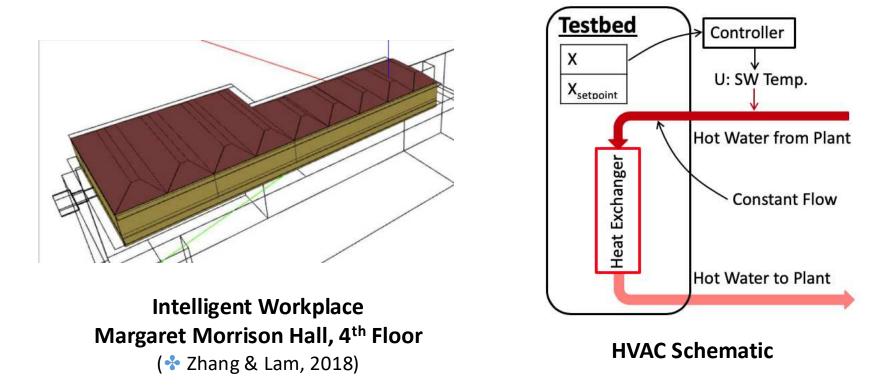
Improved "average-case" performance over robust baselines

Provably stable under "worst-case" dynamics (unlike non-robust baselines)

Needs improvement: Computational cost

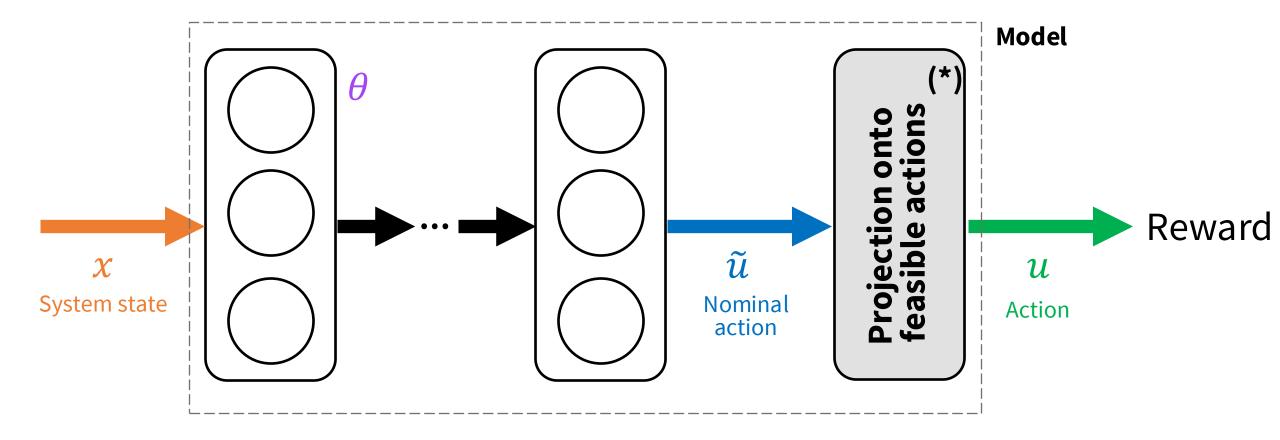
Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while respecting equipment constraints and maintaining thermal comfort



Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization." *ACM International Conference on Future Energy Systems (ACM e-Energy) 2021*.

Differentiable projection onto feasible actions

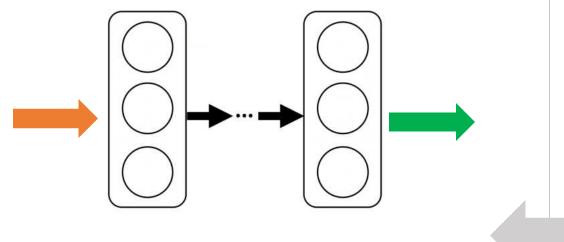


Results on realistic-scale building simulator

Improved energy efficiency (4-24%) Comparable thermal comfort

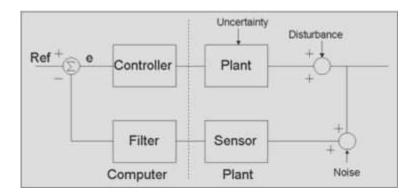
	Total Heating Demand (kWh)	Predicted Percentage Dissatisfied	
		Mean (%)	Std (%)
Existing controller	43709	9.45	5.59
Agent #6 (Zhang & Lam, 2018)	37131	11.71	3.76
Gnu-RL (Chen et al., 2019)	34678	9.56	6.39
PROF (ours)	33271	9.68	3.66

Deep reinforcement learning vs. robust control



Deep RL

Pro: Expressive, well-performing policies **Con:** Potential (catastrophic) failures



Robust control

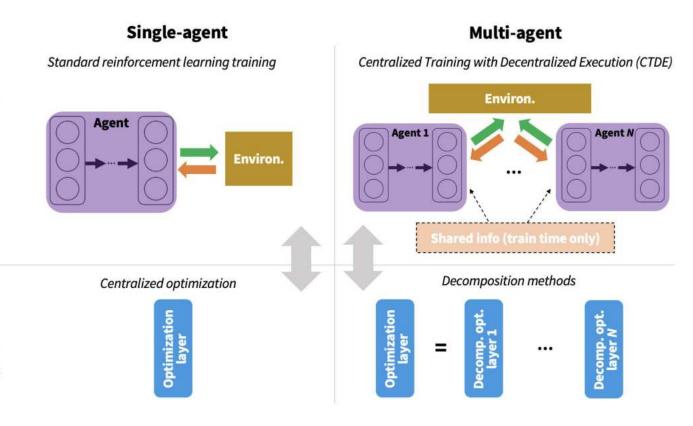
Pro: Provable stability guarantees **Con:** Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

- **Optimization-in-the-loop ML:** Framework for developing ML methods incorporating knowledge of physics/hard constraints, via optimization problems
- **Application to single-agent control:** Optimization-in-the-loop reinforcement learning with enforcement of asymptotic stability or state/action constraints
- Future directions in distributed control: Bridging optimization-in-the-loop learning, multi-agent reinforcement learning, and decomposition methods

Single-agent **Multi-agent** Centralized Training with Decentralized Execution (CTDE) Standard reinforcement learning training Environ. Agent Agent 1 Agent N Environ. Decomposition methods Centralized optimization **Optimization Optimization** <u>o</u> opt 0 layer layer Decomp. layer ... COM 0 De

Many questions – seeking collaborators!



Addressing the "right" settings

- Distributed vs. decentralized?
- Competitive vs. cooperative?
- Communication constraints?
- Stability and safety reqs.?

Bridging the "best" methods

- Robust control formulations and synthesis techniques
- Decomposition approaches