

Anomaly-Aware Distributed Control for DER-Rich Distribution System

Anurag K Srivastava, West Virginia University (WVU)

Workshop on Enabling Cyber-Resilient Distribution Systems with Edge-IBR

October 19, 2024

Changes with DER-Rich Electric Grid

Control Center with ADMS

Images from EPRI report

If we want grid service from these DERs, what should be the control architecture?

Possible Control Architecture for the DER-Rich Distribution System

(e) Hierarchical

(f) Hybrid

(c) Distributed

(d) Local

Traits	Centralized	Decentralized	Local	Distributed
Communication	Each DG node communicate with	Number of communica-	Local controllers are	The sparsity of the communi-
Requirement	the central coordinator following a	tion links can vary de-	reliant on central	ration requirement among cen-
	star topology (for # nodes in the dis-	pending upon existence of	controllers only for	tral controllers determines the
	tribution network requires n - 1 bi-	computation nodes. Each	the set-points/ can	requisite number of communi-
	directional communication links).	of the cluster member	compute set-points in	cation links - in a distribu-
	It is possible that the data transfer	nodes communicates with	a distributed way; but	tion network with a nodes there
	can take place through other nodes.	associated coordinators -	associated commu-	will be at least n-1 links -
	The back up links between nodes	each of these coordina-	nication requirement	if the intra-nodal link availabil-
	can also be present in another cen-	tors are also connected	is comparatively	ities are coarse enough then
	tralized topology. In this case, if	chrough high speed links	lower sach of the	each node communicates with
	a link is broken, the data can be	[H,VH]	controller operate au-	e-1 other nodes, totalling 1
	transferred through the back up link		tonomously based on	communication links - the
	[H,VH]		focal measurements	computational coordination re-
			[ir.]	quirement requires the links to
				be very fast
				[M,VH]
Computational	Central node: Requires multiple	 Cluster lead node: 	 Edge devices: Each 	 Edge devices: Each the DG-
Requirement and	servers with high computations.	Needs to compute the	of the DGs operate	controllers need to be intelli-
coordination	Computation is also needed to	control action for the	autonomously based	gent enough to coordinate with
	handle coordination among the	closter's 2Gs.	on local measure-	its topological neighbours
	back up tinks	[14]	ments. They do not	Ival
	1AH)		require any coordina-	
	a final design front of the	 Edge devicati Com- 	50 A 41	
	 Edge devices: Each of the 	putational requiriment	(L,M)	
	edge devices reports local measure-	is similar to that or		
	ment to the central agent, who in	contraining the date to		
	for all the DCs - adapt devices has	hade reports the data to		
	for an the DGL - edge divises has	D 1		
	[L]	(-)		
Performance Op-	Reliance on all the local measure-	While the DGs are sepa-	The controllers, based	Although this type of con-
timality	ments in real-time makes this con-	rated into several clusters,	on their local mea-	troller ensures optimality, it is
	trol type to be the optimal	and each of the cluster-	surements, acts on	overly reliant on communica-
	[[VH]	coordinator computes the	their own to deter-	tion network for information

	1 [L]			
Performance Op-	Reliance on all the local measure-	While the DGs are sepa-	The controllers, based	Although this type of con-
timality	ments in real-time makes this con-	rated into several clusters,	on their local mea-	troller ensures optimality, it is
	nor	and each of the cluster-	surements, acts on	overy relant on communica-
	tauit	coordinator computes the	their own to deter-	tion network for information
l		Control actions for the	mine control actions	eschange; unixe other meth-
		Dias; the clusters need to	- nence, optimasty	ods this controller is a gradient-
		coordinate among them-	is not guaranteed;	based method, and hence con-
		in the overall optimize	utilizes topology	nearly to continuously dealer
		(14)	of the distribution	rootical actions to be in close.
		e.5	network for the coor-	ioon which makes the con-
			finated control action [troner otten prone to failure
			IVL1	161
Cyber Resiliency	· Communication: Since the num-	· Communication: The	Communication: No	· Communication: Result of
	ber of back up links is low, failure	failure of one of the	communication links	a communication link failure,
	of a link may lead to the failure of	communication link	between DGs.	a few nodes can become out
	the corresponding DGs	makes associated cluster	[VH]	of service (depends on link
	[kr]	to be out of service -		topology).
		existance of back up links	 Computing: Com- 	[14]
	 Computing: All the compu- 	reduces overall failure	putations are com-L	
	tations are executed at one node	procaunity	pletely independent	 Computing: Computa-
	no is the control action	8c1	bard	tions are coordinated through
	taci -	A Computing Com	(vid	Distant
	- Proprietion immost of st	 Computing: Com- autation are done in the 	· Promotion interact	fur weat
	tack. Any of DCs can be a	paradon are done in the	of attack. Since there	 Empirical immediate
	potential entry point for an attack	(L.M)	is be communication	attack: If an attacker is able to
	to the centralized node - aince	()	between DGs. com-	compromise a DG, it is possible
	a DG is directly connected to	 Propagation im- 	promising a DG can	to take over the neighbours -
	the centralized node (in some	pact of attack: Any of	only impact on it	the distance between a DG and
	topology with a few more links), by	DGs within a cluster is	(not other DGs) -	compromised DG has inverse
	compromising it, it is possible to	a possible attack entry	network performance	relation with the probability of
	take over the centralized node	point by compromising	can be impacted	the attacker access.
	[VL]	a DG, an attacker can	- the DGs can be	[H]
		take over the lead node	compromised through	
		or the chister	the supervisory node	
		fext	[VH]	

generation costs

Meilati

 Frequency regulation

Distributed Volt-Var Optimization

(Cyber-Power Testbed)

• N. Patari, A. K. Srivastava, G. Qu, and N. Li, "Distributed voltage control for three-phase unbalanced distribution systems with ders and practical constraints," *IEEE Transactions on Industry Applications*, vol. 57, no. 6, pp. 6622–6633, 2021.

independently solves OPTDIST-VC algorithm based on modified primal-dual method for VVO

Distributed Volt-Watt Optimization

Volt-Watt Control (VWC) Problem

 $\min_{\mathbf{x}} \sum_{\forall i} f_i(x_i)$ s.t. $\underline{y}_i \le y_i(x_i) \le \overline{y}_i$ $\underline{x}_i \le x_i \le \overline{x}_i$

$$\begin{split} \widetilde{\boldsymbol{v}}(\widetilde{P}^{F}) &= \bar{Z}^{P} \widetilde{\boldsymbol{P}}^{\boldsymbol{C}} + \widetilde{\boldsymbol{v}}^{\boldsymbol{unc}} \\ \widetilde{\boldsymbol{v}}^{\boldsymbol{unc}} &= \bar{Z}^{P} \widetilde{\boldsymbol{P}}^{\boldsymbol{F}} + \bar{Z}^{Q} \widetilde{\boldsymbol{Q}} + v_{0} \boldsymbol{1}_{3N} \end{split}$$

Primal-Dual Method for solving the problem above

$$\hat{p}_{j}(t+1) = \hat{p}_{j}(t) - \alpha \left\{ \left(\overline{\lambda}_{j}(t) - \underline{\lambda}_{j}(t) \right) + \sum_{\forall i \in \mathcal{N}_{j}} \left[\overline{Z}^{P} \right]_{ji}^{-1} \left[f_{i}'(\hat{p}_{i}(t)) + \operatorname{ST}_{-cp_{j}^{mpp}(t)}^{0}\left(\xi_{i}(t) + c\hat{p}_{i}(t)\right) \right] \right\}$$

$$p_{k}(t+1) = \xi_{j}(t) + \beta \frac{\operatorname{ST}_{-cp_{i}^{mpp}(t)}^{0}\left(\xi_{j}(t) + c\hat{p}_{j}(t)\right) - \xi_{j}(t)}{c}$$

$$\overline{\lambda}_{j}(t+1) = \overline{\lambda}_{j}(t) + \gamma \left[\left(v_{j}^{meas}(t) - \overline{v}_{j} \right) \right]^{+}$$

$$\underline{\lambda}_{j}(t+1) = \underline{\lambda}_{j}(t) + \gamma \left[\left(\underline{v}_{j} - v_{j}^{meas}(t) \right) \right]^{+}$$

$$\text{independently based on models are defined.}$$

Iteratively takes care of modelling errors!!

independently solves OPTDIST-VWC algorithm based on modified primal-dual method for VWC

 $\bar{\lambda}_j, \underline{\lambda}_j, \xi_k$

 $p_k(t+1)$

 $v_k(t)$

 $\bar{\lambda}_j, \underline{\lambda}_j, \xi_k$

 $p_k(t+1)$

° AP

 $v_k(t)$

Distributed Volt-Watt Optimization

- Varying performance with distributed approaches
- How to compare the performance of a given distributed algorithm compared to other algorithms?

	Power	Domain	Cyber I	Domain	Decision	-Making
	System Model	Applicati- on Type	Implemen- tation Type	Commun- ication	Iterative Data Exchange	Algorithm type
Distributed Method	Relaxed Three- Phase Branch Flow	Voltage Profile Improve- ment (Volt- Watt Control)	P2P Server- less Control	Frequent	Dynamic Method	Distribut- ed-Dual Method (Primal- Dual Method)

Control for DERs

- Algorithm requirements: Voltage measurements → Variable Calculation → Set-Point Deployment → Neighbor Communicate
- Communication latency? Computation time?
- We use old measurements for variable calculation and deployment → But DER out put might have already changed!! → Resulting setpoints many not be deployable
- Solution? Use old measurements for variable calculation, and new MPP for setpoint update

$$p_i^{inj}(t+1) = \left[p_i^{mpp}(t+1) + \left[\hat{p}_i(t+1) \right]_{-p_i^{mpp}(t)}^0 \right]_0^{p_i^{mpp}(t+1)}$$

Cyber-Power Test-bed

Power System Layer : Developed with OpenDSS

- **Cyber Layer: Developed with Mininet**
- Application Layer : Developed with Python
- **Python Wrappers binds all three layers**

Challenges:

- Data flow among layers
- Time synchronization
- Running applications in Mininet hosts
- Facilitate Plug-&-Play Capability

P. S. Sarker, N. Patari, B. Ha, S. Majumder, and A. K. Srivastava, "Cyber-power testbed for analyzing distributed control performance during cyber-events," in Proceedings of the 9th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, 2022.

Cyber-Power Test-bed

Cyber Attack Application:

ICMP hPing3 Flooding Malicious Node Victim DER Controller

DOS attack

Victim

Host

Test Cases & Results

Use case:

- DERs are connected at nodes 671, 684, 675, and 634.
- ➢ h634 and h671 are under attack with MitM, DoS, and Replay individually.

P. S. Sarker, S. K. Sadanandan and A. K. Srivastava, "Resiliency Metrics for Monitoring and Analysis of Cyber-Power Distribution System with IoTs," in IEEE Internet of Things Journal, 2022

CYBER RESILIENCY METRICS COMPARISON

Archi-	Cyber Anomaly	Convergence	Cyber Metric
tecture	Ratio	Factor	Score
Centralized	0.95	0.16	0.555
Distributed	0.30	0.52	0,410

Summary

Analyzed

Findings

- Distributed feedback-based volt-watt controller guaranteeing asymptotic convergence of voltage-related constraints
- **Developed** Realistic cyberattack scenarios in cyber-power testbed to test performance of distributed control application

- Performance of distributed control during different cyber-attacks
- Effects of cyber-attacks on distributed volt-watt control in different nodes of the distribution system

- Distributed control is not immune to cyber-attacks
- Distributed controllers need to be able to identify cyber-attacks and isolate rogue nodes and self-organize

- This study facilitates executing multiple control applications simultaneously to show performance analysis under different cyber vulnerabilities
- Advantages The understanding of this study paves the way to develop more cyber-resilient control algorithms