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Distribution Grid

e Final Tier in electricity transfer

— More active devices, more opportunities for control/services
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Distribution Grid Evolution l
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Distribution Grid Evolution

e New operating paradigms:

— Virtual power Plants

— Operating Envelopes
— New markets,

BUT

Needs:

— Metering for estimation
— Coordination

Distributed Energy

ncy
Finds Grid Transpare
th:hdilyid-the-Meter a Challenge

2
for Utilities
r t t enge of managing pehind-the-meter

. ith the chall .
American electriguiities continue to grapple with T8 == - curvey of utility decision-makers
North Amer

distributed energy reso
published Feb. 15.

Operational challenges
caused by behind-the-
meter DERs are known
but difficult to address
due to lack of visibility

Utilities are aware that behind-the-meter DERs are
impacting the grid, but they only have a high-level
overview. The vast majority of those surveyed say
they have visibility into the resources’ effects on




Distribution Grid Sensing

* Smart meters, PMUs, micro-PMUs, loT, AMI
* Big Data: High fidelity measurements
e Sparse: Not everywhere in low voltage grids

Use cases with limited edge devices:
v’ Topology learning/ Phase identification
v Control/aggregation/VPP needs impedances

Observe states Take control action Incur cost

(voltage/ injection) (change in injection) (injection+state)

Update Control
(Needs topology/parameters) Standard Feedback loop

A




Problem: Learning with end-users

 Data: Time-series Nodal voltages (V) and injections (P,Q) at leaves
* Unobserved: all intermediate nodes & lines
e Estimate: Operational Topology + Line Impedance

Theoretical guarantees via uhj_,. . i
statistical Machine Learning . ‘ all

e what length of observations? i 7 '

* how much observability? N qi\. ,\ i"\_'. i

e how much noise? K MW O W &




Grid Model:

e Distribution grid features
1. Structure of the grid: Radial
2. Flow Physics (Static regime)
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End-user data

* Time-stamped voltage magnitudes (V) 5., TN e gt

py = E[V] "
Qv =E[V — uy][V — pv]”

> 125 M\NW/W‘\A'VMM

e Time-stamped nodal active & reactive injections (P &Q)

HP, QPa HQ QQ’ QPQ

e (Cross-covariances: QVP; QVQ '




Learning with end-users

* Data: Time-series Nodal voltages and injection samples at leaves
e Algorithm:
» Compute effective impedances between leaf pairs

Reppla,b) = H  Lla,a) + H L (b,b) — 2H (a,b)

—q
1/R 1/R 1/R

\/

** Key: Effective resistances are additive on trees

» Recursive Grouping Algo (Wilsky) to learn topology & distances (d)
from known effective impedances




Recursive Grouping Algo

a )
1. a, b are leaf nodes with common parent iff

d(a,c) —d(b,c) =d(a,c’) —d(b,c") forallc,c’ #a,b

2. a is a leaf node and b is its parent iff

d(a,c) —d(b,c) =d(a,b) forallc # a,b
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Recursive Grouping Algo

(
1. a, b are leaf nodes with common parent iff

d(a,c) —d(b,c) =d(a,c’) —d(b,c") forallc,c’ #a,b

2. a is a leaf node and b is its parent iff

d(a,c) —d(b,c) =d(a,b) forallc # a,b
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Recursive Grouping Algo
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Recursive Grouping Algo
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Estimating effective impedances

e Algorithm:
» Compute effective impedances between leaves

Refs(a,b) = Hl_/R(a a) + Hl/R(b, b) — 2H1/R(a,b)

» Uncorrelated Injections

| B 1, - E[[)}f] E[?JQ?]
Elvaps] Elvaa]] = [Hijpn(@,b) Hi\(a,b) [E[qbpb] E[st] O

— Two equations with 2 unknowns




Estimating effective impedances

e Algorithm:
» Compute effective impedances between leaves
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Estimating effective impedances

e Algorithm:
» Compute effective impedances between leaves
Refs(a,b) = Hy (a,a) + H L (b,b) — 2H 1 (a,b)

» Uncorrelated Injections

| _ gl iy Elp;] Elpsq)
Elvaps] Elvaa]] = [Hijpn(@,b) Hi\(a,b) [E[qu E[st]

» Correlated Injections

g _ Elpcpf] Elpcqz]
[Elvzpl] EfveqZ]] _[ ke, zy HoLE, C)] [E[qui] [ngi]} P

e Equations as many as number of leaves

e but can be solved as inverse covariance is sparse




Sample Complexity

Uncorrelated :

For a grid with constant depth
and sub-Gaussian complex power
injections, O(|V|log(|V|/n))
samples recovers the true
topology with probability 1 — n.

Correlated :
O(|V]*1log(IV|/n)) samples
recovers the true topology with
probability 1 — n.




Impedanec accuracy (%)

Simulations: IEEE 33 bus graphs (Matpower samples)
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Extensions

e |f intermediate node has degree 2, node
ignored but impedance stays intact.

e Needs 50% observability (else Kron reduction)

e Can be modified for dynamic
measurements/three-phase topology etc.




Extensions

e |f intermediate node has degree 2, node
ignored but impedance stays intact.

e Needs 50% observability (else Kron reduction)

e Can be modified for dynamic
measurements/three-phase topology etc.

Limitations

e If extremely low observability (~¥15%),
approximate topology
e Not good for faults

— Signatures are non-linear
— Neural network based methods work great

Single Phase to Ground (SPG)
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W. Li, D. Deka, PPGN: Physics-
Preserved Graph Networks for Real-
Time Fault Location in Distribution
Systems with Limited Observation
and Labels, HICSS, 2023



Current Work

e Topology Learning inside control loop and impact on performance
for voltage control.

Observe states Take control action Incur cost
(voltage/ injection) (change in injection) (injection+state)

Update Control

A

(Needs topology/parameters)
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.I;eaming with End-Users in Distribution Grids:

Topology and Parameter Estimation
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Abstract—Efficient operation of distribution grids in the smart-
grid era is hindered by the limited presence of real-time nodal
and line meters, In particular, this prevents the easy estimation of
grid topology and associated line p that are y
for control and optimization efforts in the grid. This paper
studies the problems of topology and parameter estimation
in radial balanced distribution grids where measurements are
restricted to only the leaf nodes and all intermediate nodes are
unobserved/hidden. To this end, we propose two exact learning
algorithms that use balanced voltage and injection measured
only at the end-users. The first algorithm requires time-stamped
voltage samples, statistics of nodal power injections and permis-
nbkﬂmhnpednmwmvvrrlhelruelopohgv The second
and improved algorithm req; only t d voltage

state estimation in the grid, in particular of the current radial
topology of current operational lines, and their impedances.
In addition, real or near real-time estimation of the distri-
bution grid topology and corresponding line impedances is
not straightforward due to the limited availability of real-
time measurement devices, unlike in high voltage transmission
grids. In recent years, Phasor Measurement Unit (PMU) tech-
nology and its alternatives (e.g., micro-PMUs [1], FNETs [2])
have become available in distribution grids, but their presence
is not ubiquitous [3]. Among others, the presence of under-
ground lines in urban areas makes meter placement, direct

and complex power samples to recover both the true topology
and impedances without any additional input (e.g., number of
grid nodes, statistics of injections at hidden nodes, permissible
line impedances). We prove the correctness of both learning
algorithms for grids where unobserved buses/nodes have a degree
greater than three and discuss extensions to regimes where that
assumption doesn't hold. Further, we present computational and,
more importantly, the sample complexity of our proposed algo-
rithm for joint topology and impedance estimation. We illustrate
the performance of the designed algorithms through numerical
experiments on the IEEE and custom power distribution models.

Index Te Distribution Missing data, Power
flows, Sample complexity, Topology and Impedance estimation

and calibration of parameters challenging. Thus,
there is a greater need to develop efficient algorithms that can
provably esti pology and line p under sparse
meter presence and infrequent calib of line par

More importantly, new loads such as smart air-conditioners or
electric vehicles connected to the grid at the end-user level
have the ability to measure and communicate nodal voltages
and injections, In this work, we consider such scenarios and
analyze the topology and parameter estimation problem in
grids where only leaf nodes measurements of the gnds are
available,

A. Prior Work
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Learning Distribution Grid Topologies: A Tutorial

Deepjyoti Deka™, Senior Member, IEEE, Vassilis Kekatos™, Senior Member, IEEE,
and Guido Cavraro~, Member, IEEE

Abstract—Unveiling feeder topologies from data is of
paramount importance to advance situational awareness and
proper utilization of smart in power
This tutorial summarizes, conirasts, and establishes useful links
between recent works on topology identification and detection
schemes that have been proposed for power distribution grids.
The primary focus is to highligh hods that the
limited availability of measurement devices in distribution grids,
while enhancing topology estimates using conservation laws of
power-flow physics and structural properties of feeders. Grid data
from phasor measurement units or smart meters can be collected
either passively in the tradiional way, or actively, upon actuat-
inggﬂdmuummdm:surm;me[wdersmmgtmpam
Amlmrﬂdmm{udndmhﬁ:hmvud

1 under disp meter p i Snthlnpol-
oﬂlearmngchlmsmnbemmnadexuﬂvnrappmnmal&y
snvinalgnriﬂmtkmlnlhnsmlhnﬂmlﬁzlsﬁmpuuhml

from least-sg fits to convex optimization
prvhlems and from polynomial-time searches over graphs to
mixed-integer programs. Although the emphasis is on radial
single-phase feeders, extensions to meshed and/or multiphase cir-
cuits are sometimes possible and discussed. This tutorial aspires
to provide hers and engi with knowledge of the cur-
insights into future directions of work.

Index Terms—Smart inverters, smart meter data, radial graph,
recursive grouping, active sensing, voltage covariances, graph
Laplacian matrix, linear distribution flow model.

I. INTRODUCTION
ISTRIBUTION grids constitute the final tier in the
delivery of electricity to end-users. To ease protection
and voltage control, most distribution grids are operated in a
radial (tree-like) topology, which can be modified by chang-

the growth of behind-the-meter distributed energy resources
(DERs) and smart loads (e.g., air-conditioners, storage devices,
electric vehicles) have brought distnbution grids to the fore-
front of smart grid advancement [83]. Industrial and academic
research on smart distribution grids has advocated the partici-
pation of distribution grid resources in wholesale electricity
markets and ancillary services (such as demand response,
frequency regulation, and transactive energy services [62]).
Integrating renewables introduces new challenges for voltage
regulation and calls for dispatching DERs without wiolat-
ing physical and operational grid ratings. This pecessitates
knowing the comect feeder models. Moreover, situational
awareness requires accurate distribution grid state estimation
(DSSE) [26], in which the operational topology is a critical
component. Topology estimates are also important for ensuring
the dynamic stability of inverter-interfaced DERs,

However, distribution utilities often have only partial knowl-
edge of their primary and/or secondary networks and the
associated line impedances. Similarly, even if the utility knows
the line infrastructure and line impedances, it may not have
information on which lines are currently energized. This is
owing to the fact that distribution grids are frequently recon-
figured for mai ; load balancing; to improve voltage
profiles, minimize losses, or alleviate faults; or rashly, while
restoring service after extreme weather events. Such changes
may not be logged into the distribution management system,
and hence, need to be estimated or at least verified. In this
context, grid topology learning can be broadly classified into
topology detection and topology identification. In topology
detection, the estimator or system operator knows the line
infrastructure and their impedances and needs to determine

S. Park, D. Deka, S. Backhaus, M. Chertkov. Learning with
end-users in distribution grids: Topology and parameter
estimation. IEEE Transactions on Control of Network
Systems. 2020.

D. Deka, V. Kekatos, G. Cavraro. Learning distribution grid
topologies: A tutorial. IEEE Transactions on Smart Grid.
2023.
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