Digital Twins for Real-Time Monitoring of **Inverter Dominated Grids**

Panayiotis Moutis

Assistant Professor, City College (CCNY) of the University of New York

D @Pmoutis **in** Panayiotis Moutis

Introductions

• What keeps me up at night?

Wide integration & *seamless* operation of (volatile) renewables in electrical grids

• How do I make what I care about possible?

Control, system modeling, optimization, heuristic methods (AI & ML), standards

• Who am I working with?

X, REN, Dept. of Energy, NYISO, Duquesne, Depsys, VT-IoT, Xeal, IEEE, IET, NASPI

Outline

- Introduction: Motivation for Real-Time Monitoring
- Part 1:

Digital Twin of Distribution Transformer

• Part 2:

Wildfire detection with the Digital Twin of Overhead Conductor

• Conclusion & Path Forward

The Electrical Grid is *not* OK & *not* fair...

Average total annual electric power interruption duration and frequency per customer, by

Average total annual electric power interruption duration and frequency per customer, by U.S. state (2021)

Rank	STATE	Household Income (increasing)		
1 🤇	MISSISSIPPI	\$57,148		
2 <	WEST VIRGINIA	\$58,126		
3	NEW MEXICO	\$60,728		
4 🤇	LOUISIANA	\$61,042		
5	ARKANSAS	\$61,212		
6	KENTUCKY	\$61,790		
7	ALABAMA	\$63,401		
8	OKLAHOMA	\$66,786		
9	TENNESSEE	\$66,989		
10	SOUTH CAROLINA	\$67,922		
11	IDAHO	\$68,818		
12	INDIANA	\$69,505		
13	MISSOURI	\$69,614		
14	FLORIDA	\$69,884		
15 <	NORTH CAROLINA	\$70,000		
16 🤇	MICHIGAN	\$70,163		
17	ОНЮ	\$70,209		
18	GEORGIA	\$71,504		
19	MONTANA	\$71,836		
20 <	MAINE	\$72,988		
21	NEVADA	\$73,083		
22	ARIZONA	\$73,262		
23	TEXAS	\$74,636		
24	PENNSYLVANIA	\$74,805		
25	SOUTH DAKOTA	\$74,820		
	2022 US Cons	us Duroou		

2022 US Census Bureau Median Family Income

4/34

Thanks for

having me

MITei!

U.S. state (2020)

Electricity stakeholders' role & response to fires

UTILITY DIVE Deep Dive Opinion Podcasts Library Events

Grid Reliability Electrification Load Management Renewables Generation T&D

DEEP DIVE

Wildfires pushed PG&E into bankruptcy. Should other utilities be worried?

Catastrophic wildfires, which can lead to billions of dollars in damages, present a unique financial risk that the utility sector will want to get ahead of, experts say.

Published Nov. 19, 2020

CIM BUSINESS Markets Tech Media Success Perspectives Videos

PG&E files for bankruptcy after California wildfires

By Rob McLean and Chris Isidore, CNN Business blished 4:48 AM EST, Tue January 29, 2019

Grid phenomena become faster as grid inertia is displaced

What does the grid look like?..

- Designed to operate under (some) faulty conditions • Fault, ageing and poor maintenance go unnoticed until effects/faults pile up
- Renewables arbitrarily installed & (mostly) passively operated
- Numerous control and pain points
- Faster propagation of electromechanical phenomena

Necessary to monitor in real-time <u>AND</u> enable local/decoupled decision making

So we need more "active" grids... What does the industry think about that?

The value of synchronized, real-time measurement of electrical grid operation

- Devices capturing the time-varying signals of voltage & current
- Named "*Phasor* MU" because they determine the phase angle of signals
- Simplified description of a PMU: 'repurposed oscilloscope'
- Standardized equipment (IEEE/IEC 60255-118-1-2018)

Digital Twin of Distribution Transformer

Real Time Fault and Power Quality Monitoring

Some necessary background – Grid Design

- AC power travels long with fewer losses at higher voltage
- Most typical devices, motors and generators barely operate at medium voltage (size, protection, etc)

Some necessary background – Transformer Vector Groups & Grounding

- Transformers (T/F) increase/decrease voltage levels by inducting power between a shorter coil (low side) and a longer coil (high side)
- 1-phase is simple, but 3-phase T/F is not:

1-phase T/F = 1 coil on each T/F side (high & low)
3-phase T/F = 3 coils on each T/F side
3 coils/phases can be connected either in star or delta
The two 3-coiled T/F sides can change voltage phase
Star connection has a neutral that *could* be grounded

Thanks for having me MITei MITei!

Distribution grid design with transformers

- Some 3-phase transformers (T/F) vector groups can operate at reduced capacity with one phase of one side at fault
- From circuit theory, a Delta-Star T/F with ungrounded neutral will <u>not</u> propagate line-ground (LG) and LLG faults from Delta to Star side
- A preferred Medium Voltage (MV) and LV architecture for distribution

Can we capture faults in distribution grids in real time?

- The idea of the digital twin of a distribution T/F
- The value of distribution T/F digital twin:
 - Low voltage (LV) is directly monitored
 MV is estimated
 - o Possibly monitor other concerns?
 - Minimum disruption compared to other methods

Defining the digital twin of a single-phase distribution transformer (T/F)

- (a) > (b) > (c) T/F circuits by order of detail
- Preferring (b) circuit

$$u_{2}(t) = u'_{1}(t) + R_{S}i'_{1}(t) + L_{S}\frac{di'_{1}(t)}{dt}$$
$$i_{2}(t) = \frac{u_{2}(t)}{R_{M}} + \frac{1}{L_{M}}\int u_{2}(t) dt + i'_{1}(t)$$

$$u_{2}[n] = u'_{1}[n] + R_{s}i'_{1}[n] + L_{s}(i'_{1}[n] - i'_{1}[n - 1])f_{s}$$
$$i_{2}[n] = \frac{u_{2}[n]}{R_{M}} + \frac{u_{2}[n] - u_{2}[n - 1]}{L_{M} \cdot f_{s}} + i'_{1}[n]$$

Extending to the digital twin of 3-phase distribution transformers

Testing the transformer (T/F) digital twin (1/2)

• Medium Voltage (MV) digital twin with comparable accuracy to instrument T/F under non-transient conditions:

• All transient (but very few) properly captured:

Power & Energy Society

The City College

of New York

Testing the transformer (T/F) digital twin (2/2)

- Monitoring power quality what are harmonics?
- The T/F circuit as a low-pass voltage filter

 There is no significant loss of accuracy between T/F and its digital twin for voltage harmonics

Publications & Funding

• Moutis P, Mousavi O. (2020). Digital Twin of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage from Low Voltage Measurements. IEEE Transactions on Power Delivery (IEEE).

Wildfire detection for non-preemptive disconnection of overhead lines

And keeping the lights on, under challenging circumstances...

Some Necessary Definitions – Active Power

• Energy (E) & Active Power (P)

• Whatever moves, heats & charges • $P = \frac{\partial E}{\partial t}$

• Voltage Phase Angle (**∂**)

• Measure of active power flow over a mostly inductive line (transmission)

More Necessary Definitions – Reactive Power Q

- Why does voltage drop and, thus, causes concerns about its levels? • Ohm's law of drop of voltage over an impedance run by current
- I.e. because we transmit power over lines...

 \circ Transmission line reactance much greater than resistance \circ Resistance → line losses in *P*, Reactance → line losses in reactive power *Q*

• Voltage magnitude (|V|)

o Its drop caused mostly by the line induction (transmission)

Non-preemptive disconnection of lines – Idea

Impedance of a conductor

• Impedance includes resistance (affected by temperature) & reactance

 $Z(T_c) = R(T_c) + jX = |Z(T_c)| cos\delta(T_c) + j|Z(T_c)| sin\delta(T_c)$

Method of detecting approaching forest fire through line impedance

• It is
$$tan(\delta(T_c)) = \frac{X}{R(T_c)}$$

• $tan(\delta)$ may be estimated from electrical measurements as:

$$tan\delta = \frac{P_R V_S sin\theta + Q_R V_S cos\theta - Q_R V_R}{P_R V_S cos\theta - Q_R V_S sin\theta - P_R V_R}$$

Relationship of Resistance to Ambient Temperature

- Particularly complicated
- But standardized

*RI*² effect of line loading per se
 q_s effect from solar irradiation
 q_c exchange of heat load with surroundings
 V_w wind speed cooling

- $\circ q_r$ radiated heat loss
- \circ *T_a* ambient temperature

$$R(T_{c}) = R_{ref} \cdot \left[1 + \alpha \left(T_{c} - T_{c,ref}\right)\right]$$

$$\frac{dT_{c}}{dt_{T}} = \frac{1}{m \cdot C_{p}} \left[R(T_{c}) \cdot I^{2} + q_{s} - q_{c}(V_{w}, T_{s}, T_{a},) - q_{r}(T_{s}, T_{a})\right]$$

Effect of fire to ambient temperature

- Non-trivial relationship
- Function of fuel of fire, distance from a point of measurement and duration of the fire at a given intensity
- For a moss pine forest with several trees

$t_F(s)$	<i>d</i> (m)	ΔT_a (°K or °C)	$t_{F}(s)$	<i>d</i> (m)	$\begin{array}{ } \Delta T_a \\ (^{\circ} K \text{ or } ^{\circ} C) \end{array}$
10		8.23.10-5	10		30.99
30	50	1.42.10-4	30	5	53.69
60		$2.02 \cdot 10^{-4}$	60		75.93
10		5.81	10		71.61
30	10	10.06	30	1	124.03
60		14.23	60	~~~~	175.40

TEMPERATURE CHANGE AT DISTANCE d FROM AN OVERHEAD LINE FOR HEATING TIME t_F

How should the method operate – and not...

Performance (False Positives, Timing Loss & Delay, Capacitor Switching) – *In Silico*

Control type & conditions	$\Delta tan \delta_t$ performance (%)				
	TP	TN	FP	FN	
Control 1 with $\Delta T_c > 2.87^{\circ}$ C	99.32	0.29	0.29	0.10	
Control 2 with $\Delta T_c > 2.87^{\circ}$ C and $V_{err} < 0.003\%$	89.13	0.00	0.00	10.87	

Publications

• Moutis P., Sriram U. (2022). PMU-Driven Non-Preemptive Disconnection of Overhead Lines at the Approach or Break-Out of Forest Fires. IEEE Transactions on Power Systems.

Towards Inverter Digital Twinning

Typical Grid Forming Inverter Topology & Control

Grid Stability & Security with Inverters

- All controllers of an inverter may cause instability => demanding tuning
- Most owner-provided inverter models are invalid => operator uncertainty
- Emulating conventional generation improves stability & security => affects inverter characteristics & requires additional components
- Grid impedance affects inverter control parametrization => coordinated control & real-time grid impedance monitoring necessary
- Weakened inertia accelerates propagation of instability => operators' response times limited over countless control points

Conclusions & Path Forward

- (Near-) Real-time Monitoring & 'decoupled' automation becomes necessary across the grid from transmission to distribution
- Digital twinning "passive" components (T/F, lines, etc) easier
- Digital Twinning inverter based resources much more elaborate

Come work with me...

Thanks for your attention!

Questions, please?

http://panay1ot1s.com

Twitter: @PMoutis *LinkedIn*: Panayiotis Moutis

